Marking Scheme

Chemistry - 2014

Outside Delhi- SET (56 /1)

- 1 It first increases then decreases or graphical representation. 1
- 2 Zn acts as reducing agent.
- 3 2
- 4 0
- 2-Chlorobutane or or first molecule of the pair.

 5 Proteins
- 6. Diazotization
- 7. Glucose & Fructose
- 8. CHO

9. Given; $d = 2.8 g/cm^3$; Z = 4; $a = 4 \times 10^{-8} cm$ $N_A = 6.022 \times 10^{23}$ per mol

$$d = \frac{Z \times M}{a^3 \times N_A} \qquad or \qquad M = \frac{d \times a^3 \times N_A}{Z}$$

$$\Rightarrow M = \frac{2.8 \text{ g cm}^{-3} (4 \times 10^{-8} \text{ cm})^{3} \times 6.022 \times 10^{23}}{4}$$

$$M = 2.8 \times 16 \times 10^{-1} \times 6.022 = 26.97 \text{ g/mol}$$

- 10 (i) Metal excess defect / Metal excess defect due to anionic vacancies filled by free electrons
- / Due to F centers.

 (ii) Schottky defect.

Or

10 (i) Tetrahedral void is surrounded by 4 constituent particles (atoms / molecules / ions).

Octahedral void is surrounded by 6 constituent particles (atoms / molecules / ions).

1

1

OR

radius ratio (r^+/r^-) for Tetrahedral void is 0.225 & radius ratio for octahedral voids is 0.414

(ii) A regular three dimensional arrangement of points in space is called a **crystal lattice**.

Unit cell is the smallest portion of a crystal lattice which, when repeated in three directions, generates an entire lattice. / unit cell is the miniature of crystal lattice / microscopic edition of the crystal lattice.

11 **Kohlrausch law of independent migration of ions**. The law states that limiting molar 1 conductivity of an electrolyte can be stated as the sum of the individual contributions of the anion and cation of the electrolyte.

On dilution, the conductivity (κ) of the electrolyte decreases as the number of ions per unit 1 volume of solution decreases.

12 (i) Zero order reaction

1

1

(ii) slope =
$$-k$$

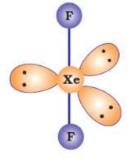
In this math of the impure metal is made to set as and A strip of the same metal in mure

In this method, the impure metal is made to act as anode. A strip of the same metal in pure 1 form is used as cathode. They are put in a suitable electrolytic bath containing soluble salt of the same metal. Pure metal is deposited at the cathode and impurities remain in the solution.

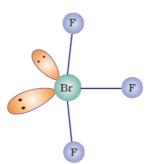
For example: electro refining of Cu, Ag, Au (any one)

1

14 (i) $P_4 + H_2O \longrightarrow$ no reaction or if attempted in any form, award one mark


10) 14 + 1120 In order of the attempted in any form, a ward one many

1


$$(ii) \ XeF_4 + O_2F_2 \longrightarrow XeF_6 + O_2.$$

1+1

1

15

16 Reimer-Tiemann reaction

$$\begin{array}{c}
OH \\
CHCl_3 + aq NaOH
\end{array}$$

$$\begin{array}{c}
OH \\
CHO
\end{array}$$

$$H^+$$

$$CHO$$

Williamson synthesis

$$R-X + R'-O Na \longrightarrow R-O-R' + Na X$$

17 $\mathbf{HBr} \rightarrow \mathbf{H}^+ + \mathbf{Br}^-$

$$CH_3 - CH_2 - \bigcirc -H + H^+ \longrightarrow CH_3 - CH_2 - \bigcirc -H$$

$$1/2$$

$$CH_3 - CH_2 - O - H \rightarrow CH_3 - CH_2 + H_2O$$

$$CH_{5}$$
C H_{2} $\xrightarrow{+}$ CH_{3} C H_{2} - Br

Or 1

19 (a) Given E^{o} Cell = +2.71V & F = 96500C mol⁻¹ n = 2 (from the given reaction)

$$\Delta rG^{O} = -n \times F \times E^{o}Cell$$

$$\Delta rG^{O} = -2 \times 96500 \text{ C mol}^{-1} \times 2.71 \text{ V}$$

$$= -523030 \text{ J/mol}$$
 or -523.030 kJ/mol

1

(b) Hydrogen – oxygen fuel Cell / Fuel cell.

$$20 \qquad SO_2 Cl_2 \qquad \rightarrow SO_2 + Cl_2$$

At
$$t = 0s$$
 0.4 atm 0 atm

At
$$t = 100s$$
 $(0.4 - x)$ atm x atm

$$Pt = 0.4 - x + x + x$$

$$Pt = 0.4 + x$$

$$0.7 = 0.4 + x$$

$$x = 0.3$$

$$k = \frac{2.303}{t} \log \frac{p_i}{2p_i - p_t}$$

$$k = \frac{2.303}{t} \quad \log \frac{0.4}{0.8 - 0.7}$$

$$k = \frac{2.303}{100s} \quad \log \frac{0.4}{0.1}$$

$$k = \frac{2.303}{100s} \times 0.6021 = 1.39 \times 10^{-2} \text{ s}^{-1}$$

21 These are liquid-liquid colloidal systems or the dispersion of one liquid in another liquid.

Types: (i) Oil dispersed in water (O/W type) Example; milk and vanishing cream $\frac{1}{2} + \frac{1}{2}$

(ii) Water dispersed in oil (W/O type) Example; butter and cream. $\frac{1}{2} + \frac{1}{2}$

1

(Any one example of each type)

- 22 (i) As N can't form 5 covalent bonds / its maximum covalency is four.
 - (ii) This is due to very small size of Oxygen atom / repulsion between electrons is large in relatively small 2p sub-shell.
 - (iii) In H₃PO₂ there are 2 P–H bonds, whereas in H₃PO₃ there is 1 P–H bond
- 23 (i) Tetraamminedichloridochromium (III) chloride.
 - (ii) Optical isomerism
 - (iii) In $[NiCl_4]^{2-}$; Cl^- acts as weak ligand therefore does not cause forced pairing, thus electrons will remain unpaired hence paramagnetic.

In [Ni(CO)₄]; CO acts as strong ligand therefore causes forced pairing, thus electrons will ½ become paired hence diamagnetic.

24 (a)

(i)
$$\bigcirc$$
-CH₂Cl

(ii)
$$CH_2CH_CH_3$$
Br

(b) (i)
$$CH_3-I$$

(ii) CH₃–Cl

- 25 (i) As primary amines form inter molecular H bonds, but tertiary amines don't form H 1 bonds.
 - (ii) Aniline forms salt with Lewis acid AlCl_{3.}
 - (iii) This is because of the combined effect of hydration and inductive effect (+I effect).

Or

(i)
$$C_6H_5NO_2 \xrightarrow{Sn+HCl} C_6H_5NH_2 \xrightarrow{NaNO_2+HCl} : 273K \longrightarrow C_6H_5N_2^+Cl^- \xrightarrow{H_2O} C_6H_5OH$$

A

B

C

 $C_6H_5NO_2 \xrightarrow{Sn+HCl} C_6H_5OH$
 C_6H_5OH

(ii) CH₃CN
$$\xrightarrow{\text{H}_2\text{O}/\text{H}^+}$$
 CH₃COOH $\xrightarrow{\text{NH}_3}$ CH₃CONH₂ $\xrightarrow{\text{Br}_2 + \text{KOH}}$ CH₃NH₂

A B C $\xrightarrow{\text{1/2}+\text{1/2}}$ $\xrightarrow{\text{+1/2}}$

- 26 (i) Peptide linkage is an amide formed between –COOH group and –NH₂ group (-CO-NH-) 1
 - (ii) Specific sequence of amino acids in a polypeptide chain is said to be the **primary** 1 structure of the protein.
 - (iii) When a protein in its native form, is subjected to change in temperature or change in pH, 1 protein loses its biological activity. This is called **denaturation of protein**
- 27 (i) (a) dedicated towards work/ kind/ compassionate (any two).
 - (b) Dutiful / caring / humane in the large interest of public health in rural area. 1/2

 (any other suitable value)
 - (ii) Narcotic analgesics ½
 - (iii) Aspartame / Saccharin / Alitame / Sucrolose.(any one)
- 28 (a)
 - (i) Molarity is defined as number of moles of solute dissolved in one litre of solution.
 - (ii) It is equal to elevation in boiling point of 1 molal solution.
 - (b) For isotonic solutions: π urea = π glucose $\frac{1}{2}$

$$\frac{W_{\text{urea}}}{M_{\text{urea}} \times V_{\text{s}}} = \frac{W_{\text{Glucose}}}{M_{\text{Glucose}} \times V_{\text{s}}} \quad \text{(As volume of solution is same)}$$

$$\frac{W_{\text{urea}}}{M_{\text{urea}}} = \frac{W_{\text{Glucose}}}{M_{\text{Glucose}}} \quad \text{or} \quad \frac{15g}{60g \text{ mol}^{-1}} = \frac{W_{\text{Glucose}}}{180g \text{ mol}^{-1}}$$

$$W_{Glucose} = \frac{15g \times 180g \text{ mol}^{-1}}{60g \text{ mol}^{-1}} = 45g$$

1

OR

28 (a) It shows positive deviation.

It is due to weaker interaction between acetone and ethanol than ethanol-ethanol interactions. 1

(b) Given: $W_B = 10g W_S = 100g$, $W_A = 90g M_B = 180g/mol$ & d = 1.2g/m L

$$M = \frac{Wt \% x density x 10}{Mol.wt.}$$

$$M = \frac{10 \times 1.2 \times 10}{180} = 0.66 \text{ M} \quad \text{or} \quad 0.66 \text{ mol/L}$$

$$m = \frac{W_B \times 1000}{M_B \times W_A \text{ (in g)}}$$

$$m = \frac{10 \times 1000}{180 \times 90}$$

$$= 0.61 \text{m} \quad \text{or} \quad 0.61 \text{mol/kg} \quad \text{(or any other suitable method)}$$

29 (a) (i)
$$Cr_2O_7^{2-} + 2OH^- \longrightarrow 2CrO_4^{2-} + H_2O$$

(ii)
$$MnO_4^- + 4H^+ + 3e^- \longrightarrow MnO_2 + 2H_2O$$

- (b) (i) Zn / Zn²⁺ has fully filled d orbitals.
 - (ii) This is due to smaller ionic sizes / higher ionic charge and availability of d orbitals.
- (iii) because Mn $^{+2}$ is more stable(3d⁵) than Mn³⁺ (3d⁴). Cr⁺³ is more stable due to t_2g^3 / d^3 configuration.

Or

29 (i)

Lanthanoids	Actinoids	
Atomic / ionic radii does not show much	Atomic / ionic radii show much variation /	
variation / +3 is the most common oxidation	Besides +3 oxidation state they exibit	
state, in few cases +2 & +4	+4,+5,+6,+7 also.	
They are quite reactive	Highly reactive in finely divided state	

(Any two Points)

(ii) Cerium (
$$Ce^{4+}$$
)

(iii)
$$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$$

(iv) Mn³⁺ is more parametric ¹/₂

Because Mn³⁺ has 4 unpaired electrons (3d⁴) therefore more paramagnetic whereas Cr³⁺ has 3 ½

unpaired electrons (3d³).

30

(a) (i)

(ii) CH₃CH=N-OH

(iii)

(b) (i) Add neutral FeCl₃ in both the solutions, phenol forms violet colour but benzoic acid does not.

1

1

1

1

1

1

(ii) **Tollen's reagent test**: Add ammoniacal solution of silver nitrate (Tollen's reagent) in both the solutions propanal gives silver mirror whereas propanone does not. (or any other correct test)

OR

- 30 (a) (i) As Cl acts as electron withdrawing group (I effect) ,CH₃ shows +I effect.
 - (ii) The carbonyl carbon atom in carboxylic acid is resonance stabilised.
 - (b) (i) Rosenmund reduction:

CI
$$H_2$$
 $Pd - BaSO_4$ $Pd - BaSO_4$ $Pd - BaSO_4$ $Pd - BaSO_4$

Benzoyl chloride

Or
$$RCOCl \xrightarrow{H_2/Pd-BaSO_4} RCHO + HCl.$$

(ii) Cannizzaro's Reaction:

Or With bezaldehyde

(c) CH₃-CH₂-CH₂-CO-CH₃.